Dual system combination approach

for various reverberant environments with dereverberation techniques

Yuuki Tachioka, Tomohiro Narita (Mitsubishi Electric) Felix Weninger, Shinji Watanabe (MERL)

 $\mathbf{x}_{\mathbf{t}}(1)$

 $\hat{\mathbf{y}}$: source signal

n: noise signal

Time [s]

 w_{μ} : weight

Reverberation time T_r

Reverberant speech

SS with different T_a

Estimation of inclination

RT estimation

SS with T_r

Assumed reverberation time T_a [s]

Dereverberated speech

(b) Late

reverberation

Reflected sound

Estimation process of T_r

Floored ratios *r*

Inclination Δ_r

(A) r increases with T_a

Estimated $T_r = a\Delta_r - b$

Parameter

(a) Early

reverberation

Direct sound

xt(m)

S: short-time Fourier transform

: element-wise multiplication

 $\mathbf{x}_t(m)$: m-th mic inputs at t-th frame

Summary

We have validated the effectiveness of techniques below:

Speech enhancement:

Single-channel dereverberation method¹⁾

-reverberation time (RT) estimation

Eight-channel beam-forming with direction of arrival estimation²⁾

ASR using Kaldi toolkit 3):

Feature transformation and speaker adaptation

-LDA, MLLT, basis fMLLR

Discriminative training and discriminative feature transformation

- -boosted MMI and feature-space boosted MMI
- -Deep neural networks

ASR System combination using ROVER⁴⁾:

Discriminative training for system combination

- -dual system approach⁵⁾
- -black box optimization of ROVER parameters⁶⁾

Speech Enhancement Part

DS beamformer with direction of arrival estimation

DS beam former

 $ilde{\mathbf{y}}_t = \sum_m \mathbf{x}_t(m) \odot \exp(-\jmath \omega \tau_{1,m})$ Estimation of direction of arrival

 $\tau_{1,m} = \arg\max \mathcal{S}^{-1} \left[\frac{\mathbf{x}_t(1) \odot \mathbf{x}_t(m)^*}{|\mathbf{x}_t(1)||\mathbf{x}_t(m)|} \right]$

*: complex conjugate SS based derev. with RT estimation $\hat{\mathbf{y}}: some \\ \mathbf{\hat{y}}: some \\ \mathbf{\hat$

 $|\mathbf{x}_t|^2 = \sum_{\mu=0}^t w_\mu |\hat{\mathbf{y}}_{t-\mu}|^2 + |\mathbf{n}|^2$

Instantaneous mixture model

Approx. dereverberation formula (1)

Approx. Gerever beration formula ($|\hat{\mathbf{y}}_t|^2 = |\mathbf{x}_t|^2 - \sum_{\mu=1}^t w_\mu \left[\eta(T_r) |\mathbf{x}_{t-\mu}|^2 - |\mathbf{n}|^2 \right] - |\mathbf{n}|^2$

 $|\hat{\mathbf{y}}_{t-\mu}|^2 = \eta(T_r)|\mathbf{x}_{t-\mu}|^2 - |\mathbf{n}|^2$ | η : direct sound / total

Polack model

 $w_{\mu} = \left\{ \begin{array}{ll} 0 & (1 \leq \mu \leq D) \\ \frac{\alpha_s}{\eta(T_r)} e^{-2\Delta\varphi\mu} & (D < \mu) \end{array} \right. \begin{array}{l} \alpha_s \text{: sub. param.} \\ \varphi \text{: frame shift} \\ \Delta \text{: constants} \end{array}$

To estimate RT, floored ratio of Eq.(1)

is calculated for assumed RT

Two obserbations:

- r increases with Ta (assumed RT)
- r increases with T_r (actual RT)

Using these, RT can be estimated from the floored ratio

Experiments

System overview

Task description and setup

A middle-size vocabulary continuous speech recognition task 8 different reverberant environments:

- -3 rooms with near/far mic settings for SIMulated data
- -1 room with near/far mic settings for REAL data with noise

Speech enhancement

derev improves the performance BF improves it further

Feature transformation and discriminative methods

LDA improves the performance due to the use of long context basis fMLLR is effective f-bMMI is effective

SAT is unstable

Subspace GMM and DNN

bMMI is effective

Best performer is different for each environment

Complementary systems

Performance is moderate

Output tendendies are different

Selection of combined system

WER improves monotonically

Room 1

near

12.50

7.27

6.44

5.81

5.90

5.30

10.94

6.57

6.17

5.86

5.64

4.96

far

13.43

8.17

6.54

6.84

5.61

6.93

6.64

6.44

6.18

5.62

100 iterations are enough

ROVER parameter

Evaluation set

1ch

Kaldi baseline

derev.

f-bMMI

SAT+f-bMMI

SGMM+bMMI

DNN+bMMI

ROVER

CSP+BF+derev.

f-bMMI

SAT+f-bMMI

SGMM+bMMI

DNN+bMMI

ROVER

The number of iterations

Avg

21.68

19.16

11.28

10.53

10.05

9.77

8.51

14.02

8.41

8.33

7.94

7.79

6.76

REALDATA

far

45.98

43.32

29.54

29.78

28.36

25.69

23.60

36.93

23.19

23.67

23.50

22.28

20.29

Avg

48.30

44.04

29.10

29.33

28.06

25.83

23.70

35.63

21.71

22.15

22.08

20.82

18.60

Room 1

near

50.62

44.75

28.65

28.87

27.75

25.97

23.79

34.33

20.22

20.63

20.66

19.35

16.90

System combination

System combination improves the accuracies for all the cases

Proposed method is effective for all the environment

Combination of different types of systems is effective

Average WER 11.0 8.01 8.01 6.01

10.4

Room 3

near

20.06

17.09

10.54

9.52

8.70

9.40

7.76

12.79

7.47

7.40

6.96

7.08

5.73

far

37.44

32.62

18.76

18.44

18.17

16.55

14.95

21.39

12.76

13.15

12.83

12.40

10.47

SIMDATA

far

29.69

24.71

14.11

13.97

13.84

12.57

11.16

16.33

9.93

10.13

9.23

9.29

8.18

Room 2

near

15.54

14.61

8.82

7.57

7.35

6.30

10.98

6.80

6.51

6.29

6.16

5.58

Black box optimization on ROVER parameters

ASR part

MMI discriminative training of acoustic models

MMI objective function to optimize λ and λ_c

$$\mathcal{F}_{\lambda}^{\text{MMI}}(\omega_r) = \ln \frac{P_{\lambda}(\omega_r, \mathbf{X})}{\sum_{\omega} P_{\lambda}(\omega, \mathbf{X})} = \ln \frac{\sum_{s_r \in \mathcal{S}_{\omega_r}} p_{\lambda} (s_r, \mathbf{X})^{\kappa} p_L(\omega_r)}{\sum_{\omega} \sum_{s \in \mathcal{S}_{\omega}} p_{\lambda} (s, \mathbf{X})^{\kappa} p_L(\omega)}$$

b-MMI objective function

$$\mathcal{F}_{\lambda}^{\text{bMMI}}(\omega_r) = \ln \frac{\sum_{s_r \in \mathcal{S}_{\omega_r}} p_{\lambda} (s_r, \mathbf{X})^{\kappa} p_L(\omega_r)}{\sum_{\omega} \sum_{s \in \mathcal{S}_{\omega}} p_{\lambda} (s, \mathbf{X})^{\kappa} p_L(\omega) e^{-bA(s, s_r)}}$$

 κ : acoustic scale $A(s,s_r)$: state/phoneme/word accuracy calculated from p_λ : acoustic score with HMM state sequence s the HMM state sequences of s for a reference s_r the HMM state sequences of s for a reference s_r s_r : reference state sequence s_r : reference state sequence s_r : boosting factor s_r : boosting factor for complementary system s_r : boosting factor for complementary system

 \mathcal{S}_{ω_r} , \mathcal{S}_{ω} : set of HMM state sequences which output ω_r and ω , respectively

Discriminative training for system combination

3)D. Povey, et al., The Kaldi speech recognition toolkit, in Proc. of ASRU, 2011.

Discriminative training principle:

MI between ref., 1-best of base system, and hypotheses of comp. system

 $\mathcal{F}_{\lambda_{c}}^{c}(\omega_{r}, \omega_{1}) = \mathcal{F}_{\lambda_{c}}^{MMI}(\omega_{r}) + \alpha \ln \frac{P_{\lambda_{c}}(\omega_{r}, \mathbf{X})}{P_{\lambda_{c}}(\omega_{1}, \mathbf{X})}$ $\mathcal{F}_{\lambda_{c}}^{c}(\omega_{r}, \omega_{1}) = \mathcal{F}_{\lambda_{c}}^{bMMI}(\omega_{r}) + \alpha \ln \frac{\sum_{s_{r} \in \mathcal{S}_{\omega_{r}}} p_{\lambda} (s_{r}, \mathbf{X})^{\kappa} p_{L}(\omega_{r})}{\sum_{s_{1} \in \mathcal{S}_{\omega_{1}}} p_{\lambda} (s_{1}, \mathbf{X})^{\kappa} p_{L}(\omega_{1}) e^{b_{1} A(s_{1}, s_{r})}}$

1)Y. Tachioka, T. Hanazawa, and T. Iwasaki, Dereverberation method with reverberation time estimation using floored ratio of spectral subtraction, Acoustical Science and Technology, vol. 34, pp. 212-215, 2013.

2)Y. Tachioka, T. Narita, and T. Iwasaki, Direction of arrival estimation by cross-power spectrum phase analysis using prior distributions and voice activity detection information, Acoustical Science and Technology, vol. 33, pp. 68-71, 1 2012.

4) J.G. Fiscus, A post-processing system to yield reduced error word rates: Recognizer output voting error reduction (ROVER), in Proc. of ASRU, 1997, pp. 347-354.
5) Y. Tachioka, S. Watanabe, J. Le Roux, and J. R. Hershey, A generalized framework of discriminative training for system combination, in Proc. of ASRU, 2013.
6) S. Watanabe and J. Le Roux, Black box optimization for automatic speech recognition, in Proc. of ICASSP, 2014.