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Motivation

• Deep recurrent neural network (DRNN) feature 
enhancement: promising for reverberated ASR

• Potential performance improvement by additional:
• Discriminative GMM training

• DRNN acoustic modeling 

• Integration of multi- and single-channel enhancement
F. Weninger et al., Deep Recurrent De-Noising Auto-Encoder and Blind De-Reverberation for 
Reverberated Speech Recognition, ICASSP 2014

Y. Tachioka et al., Effectiveness of discriminative training for recognition of reverberated and 
noisy speech, ICASSP 2013

J. Geiger et al., Memory-Enhanced Recurrent Neural Networks and NMF for Robust ASR, T-
ASLP 2014

5/10/14 Felix Weninger - MERL/MELCO/TUM system 2



System Overview

• Cascade multi- and single-
channel enhancement

• DRNN always sees single-
channel input

• Multi-stream HMM decoding

 Cf. CHiME Challenge
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(Geiger et al., T-ASLP, 2014)



Multi-Channel Processing

• Cross-spectrum phase (CSP) + delay-and-sum (DS) 
beam-forming in the spectral domain

• Peak-hold process

• Noise component suppression
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Single-channel DRNN-DAE 
enhancement

• Enhancement by de-noising auto-encoder (DAE)
– Supervised training of mapping from reverberated and noisy to 

clean speech features (Log Mel)
– Trained on simulated parallel data – does it generalize?

• Implement DAE as deep recurrent neural network (RNN) 
with Long Short-Term Memory (LSTM) architecture

• Successful in ASR feature enhancement task
– Outperforms DNN on CHiME

• LSTM-RNN:
– Adaptive context size
– Models output dynamics
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(Weninger et al., CSL, 2014)



LSTM de-reverberation

• Can learn long-term dependencies without blowing up input layer
More concise model

• Context size depends on history  useful for varying acoustic 
conditions
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Compute input / 
forget gate activation 

based on feed-forward 
and recurrent part

Update cell state

Output cell state to 
hidden activation

Estimated clean 
speech features

Noisy + reverberated 
features

Matrices obtained from 
supervised training



DAE training

• Training tasks: 
– 1-channel system: Map REVERB multi-condition training 

set to WSJCAM0 clean training set
– 8-channel system: Map CSP+DS processed REVERB multi-

condition training set to WSJCAM0 clean tr. set

• Dimension: 
– 1-channel: 3 bidirectional LSTM layers w/ 128 units
– 8-channel: 2 bidirectional LSTM layers w/ 128 units

• Stochastic gradient descent with momentum and input 
noise

• Parallel GPU training in mini-batch learning
– CURRENNT toolkit (http://currennt.sf.net)
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Baseline recognizer

• ASR features: 
• 23 Mel filterbank outputs
• 13 MFCCs (0-12)
• Mean normalized Log Mel features  gain-independent

• Re-implemented REVERB HTK baseline in Kaldi toolkit

• Improvements:
• LDA-STC (MLLT) instead of Δ+ ΔΔ

• Feature-level context

• Basis fMLLR adaptation per utterance
• Similar or better performance than fMLLR with less adaptation 

data
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Baseline improvements (2)

• Discriminative training of GMM-HMM
• Boosted MMI criterion:

• Tri-gram language model

• Minimum Bayes Risk (MBR) decoding
• Don’t choose hypothesis far from the N-best

• Minimize expected WER instead of SER (in case of MAP)

5/10/14 Felix Weninger - MERL/MELCO/TUM system 9



DRNN acoustic modeling
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 𝐱𝑡 = 𝑓(𝐱𝑡)

 𝐲𝑡 ≈ 𝑓(𝐲𝑡)

𝒃𝑡

DAE pre-training

Estimated phoneme 
posteriors



Multi-Stream DRNN+GMM-HMM

• Tandem decoding approach

• Discrete DRNN phoneme prediction:

• Multi-stream emission probability:

• Stream weight μ for GMM likelihood of acoustic feature 
vector xt

• DRNN phoneme confusions modeled by p(bt|st)
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Baseline ASR results

SIMDATA REALDATA

REVERB baselines (HTK)

Clean 51.86 88.38

Multi-condition 28.94 52.29

fMLLR 25.16 47.23

Our baselines (Kaldi)

Clean 51.23 88.81

Multi-condition 28.62 54.04

Basis fMLLR 23.60 47.14
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Baseline ASR results (2)

SIMDATA REALDATA

Our baselines (Kaldi)

Clean 51.23 88.81

Multi-condition 28.62 54.04

Basis fMLLR 23.60 47.14

+LDA-STC 19.42 41.42

+DT 15.53 40.60

+Tri-gram 12.28 31.05

+MBR 12.05 30.73
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Kaldi recipe available on REVERB homepage



DRNN enhancement training epochs
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Input: 1st channel

SIMDATA REALDATA

Clean recognizer, LDA-STC, ML trained, Trigram
Base: 43.4 / 89.6
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• Drastic improvement over noisy baseline
• More effective than MCT without front-end 

processing (23 / 48%)
• Fast convergence esp. on REALDATA

39.2

15.6



DRNN enhancement training epochs
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Input: CSP+DS (Channels 1-8)

SIMDATA REALDATA

Clean recognizer, LDA-STC, ML trained, Trigram
Base: 24.9 / 72.2
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31.0

11.7

• Even faster convergence …
• Mismatch by beam-forming alleviated



Enhancement results: 
Clean training w/ fMLLR adaptation

# channels DRNN enh.? SIMDATA REALDATA

1  33.2 77.8

1  14.0 35.0

8  16.4 54.5

8  9.7 26.5

Oracle 6.0 10.1

Best result without 
using the multi-
condition set!
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Enhancement results: 
bMMI MCT recognizer
• Tuning of search parameters

• Discriminative training (boosted MMI) with 
(processed) multi-condition set

# channels DRNN enh.? SIMDATA REALDATA

1  11.2 30.8

1  10.4 26.3

8  7.5 23.9

8  7.7 21.4

Oracle 5.1 9.9
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Best result with single-
channel front-end



Test set evaluation: 
Enhancement, GMM-HMM AM

WER [%] SIMDATA REALDATA

1-channel systems

REVERB baseline 25.3 49.2

GMM-HMM 11.7 30.9

+ DRNN enh. 10.2 26.7

8-channel system

+ CSP-DS 7.8 20.1
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Test set evaluation: 
DRNN+GMM-HMM AM

WER [%] SIMDATA REALDATA

DRNN+GMM-HMM 7.28 21.69

GMM-HMM w/ DRNN enh. 7.75 20.09

ROVER 7.02 19.61

GMM-HMM w/ Oracle enh. 5.65 8.47
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Results with GMM-HMM and 
DRNN enhancement by room
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Conclusions and Outlook

• Supervised training of de-reverberation with RNN is 
effective for ASR
• Works on real data

• Particularly promising for single-channel scenario

• Can be efficiently combined with beam-forming

• Some over-fitting observed (less than RNN-AM)

• Future work:
• Effectiveness of supervised training for multi-channel 

de-reverberation

• Use phase information

5/10/14 Felix Weninger - MERL/MELCO/TUM system 21



Thank you.

felix@weninger.de
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